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Recall the Markov chain with Gaussian noise:

q(xs|xt) = N (As,txt, B
2
s,t)

for s > t, we have
Ar,t = Ar,sAs,t

B2
r,t = A2

r,sB
2
s,t +B2

r,s

for r > s > t. And

q(xt|xs, x0) = N (Cs,txs +Ds,tx0, E
2
s,t)

for s > t > 0 with
Cs,t = As,tB

2
t,0/B

2
s,0,

Ds,t = At,0B
2
s,t/B

2
s,0,

E2
s,t = B2

s,tB
2
t,0/B

2
s,0.

Now, consider a forward diffusion process:

q(xt+∆t|xt) = N (At+∆t,txt, B
2
t+∆t,t)

We set
At+∆t,t = 1− ft∆t,

Bt+∆t,t = gt
√
∆t,

which is consistent with the Euler scheme of Langevin equation:

dXt = −ftXtdt+ gtdWt

In DDPM, we require A2
t+∆t,t + B2

t+∆t,t = 1. This basically says ft = g2t /2 as
∆t → 0.

Also recall

q(xt−∆t|xt, x0) = N (Ct,t−∆txt +Dt,t−∆tx0, E
2
t,t−∆t)
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where
Ct,t−∆t = At,t−∆tB

2
t−∆t,0/B

2
t,0,

= At,t−∆t

B2
t,0 −B2

t,t−∆t

A2
t,t−∆tB

2
t,0

=
1

At,t−∆t

B2
t,0 −B2

t,t−∆t

B2
t,0

=
1

1− ft−∆t∆t

(
1−

g2t−∆t∆t

B2
t,0

)
≈ 1 + ft−∆t∆t− g2t−∆t∆t/B2

t,0

≈ 1 + ft∆t− g2t∆t/B2
t,0

Dt,t−∆t = At−∆t,0B
2
t,t−∆t/B

2
t,0

= At−∆t,0g
2
t−∆t∆t/B2

t,0

≈ At,0g
2
t∆t/B2

t,0

E2
t,t−∆t = B2

t,t−∆tB
2
t−∆t,0/B

2
t,0

≈ g2t−∆t∆t

≈ g2t∆t

Here we keep the first order ∆t in approximation. So we have

q(xt−∆t|xt, x0) = N (xt + ftxt∆t+ g2t
At,0x0 − xt

B2
t,0

∆t, g2t∆t)

Now we set

pθ(xt−∆t|xt) = N (xt + ftxt∆t+ g2t h
∗(xt)∆t, g2t∆t)

In DDPM, we defined the mean squared loss:

h∗(xt) = arg min
h(xt)

Eq(xt,x0)∥h(xt)−
At,0x0 − xt

B2
t,0

∥2

Note that
At,0x0 − xt

B2
t,0

= ∇xt
log q(xt|x0)

we recovered the score match loss in continuous diffusion.
The optimizer

h∗(xt) = ∇xt log q(xt, t)

so pθ(xt−∆t|xt) corresponds to the reverse SODE

dXτ = (ftXτ + g2t∇Xτ
log q(Xτ , t))dτ + gtdWτ

where τ = T − t.
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Actually, if we use the parameterization in DDPM, then the noise ϵ is indeed

ϵ = −At,0x0 − xt

Bt,0
= −Bt,0∇xt

log q(xt|x0)

And the optimal neural network

ϵ∗θ = −Bt,0∇xt log q(xt, t)

In other words, the prediction of ϵ is effectively an approximation of the (nega-
tive) score function scaled by the noise level.

Now we look into the reverse diffusion process. In DDPM, we have

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz

In SODE perspective, suppose the forward process

dXt = −ftXtdt+ gtdWt

Then the reverse SODE is

dXt = [ftXt + g2t∇x log q(x, t)]dt+ gtdWt

Clearly the diffusion parts are consistent, since σt =
√
βt = Bt,t−∆t ≈

gt
√
∆t.
For the drift part αt = A2

t,t−∆t, therefore

1
√
αt

xt =
1

At,t−∆t
xt ≈ (1 + ft∆t)xt

Moreover,
1

√
αt

(
− 1− αt√

1− ᾱt
ϵθ(xt, t)

)
=

1
√
αt

(
1− αt√
1− ᾱt

Bt,0∇xt log q(xt, t)

)
=
1− αt√

αt
∇xt

log q(xt, t)

=
βt√
αt

∇xt
log q(xt, t)

≈g2t∆t∇xt
log q(xt, t)

We conclude that the discrete and continuous reverse diffusion processes are
consistent.
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