Denoising Diffusion Probabilistic Models

Liu Yang

We will introduce the Denoising Diffusion Probabilistic Models (DDPM) in
this lecture [1]. The notation might be slightly from the original paper.

1 Markov Chain with Gaussian Noise
Consider a Markov chain with the following kernel:
q(zslze) = N(Aéytxt’ Bs2,t)

for s > t, we have

Ar,t = Ar,sAs,t

Bg,t = Ag,ng,t + B?,s
forr > s >t.

Consider a forward discrete diffusion process:

q(xig1]ze) = N(Apgr ey, Bt2+1,t)

If we set At+1,t = V/Oi+1, Bt+1,t = \/1 — Qg4 1, Bt =1- O, which is the
notation used in [1], i.e.

q<$t|xt—1) = N(\/ 1- 5t517t—17ﬁf,)
then
As,t =/ Ot41...05
Bs,t = 4/ 1— Apy1...00
A?,t + Bit =

If we fix a; as a constant, then as s — oo, we have A,y — 0, Bs; — 1, and
q(zs|ze) = N(0,1) for any z;.
In [1], we denote a; = ITL_; . If we use this notation, then

AS,O = \/O1...Qs = /Oy

Bs,O = \/1 — 1...00g = \/1 — Qg
Q(xs\ﬂﬁo) = N(\/ dsan 1- @s)

2 Reverse Diffusion Process
We want to learn another Markov chain pg(zg.r) (reverse diffusion) defined by

po(zr) = N(0,1)
pe(xt*ﬂxt) = N(:U’e(xtvt)v Ee(xtvt))vt = Ta 27 1

so that pg(xo) approximates q(zo). po(zo.r) is not Gaussian due to the nonlin-
earity of pg. Actually py(x) becomes more and more expressive as ¢t decreases
from T to 0.

In order to train pg(x:—1|z), we need to decompose g(xo.r) in a reverse
order.

First perspective:

q(zo.r) = q(@r)q(zr—1|2T)9(TT—2|TT-1)..q(T0|T1)
But it’s hard formulate q(zi—1|x¢).
Fortunately, we have a second perspective:
q(zo:r) = q(zo)q(zr|z0)g(2r—1|2T, T0)q(TT-2|TT 1,8)---0(21 |72, T0)

An important observation is that ¢(x;|zs, zo) is Gaussian for s > ¢, and we have
the analytical expression:

q($t|$ml’o) = Q(l’s|1’t7170)‘](¢t|930)/11(175|170)
= q(l‘s|l‘t)q(l‘t‘$0)/Q(l's|l'0)
(s — Aspxt)? (@ — Arowo)? (w5 — As020)?

> exp(= B2, 2B, | 2B,)

Rearranging the first and second order coefficients, we denote
q(zi|zs, 20) = N(Cyps + Dy ywo, E2,)

Note that the mean is linear to x; and xg, while the std is independent of x,
and zg. Cs 4, Ds+, Es; can be calculated with patience.

Csp = AsBio/B2,
Dy = A oB2,/B2,
E?, = BZ,Bf,/B2,

A special case of q(zs_1|zs,z0) is given in [1]:

q(xe—1]z, 20) = N (2115 f1e (24, T0), Br),

NG Vo (1l — ay— ~ 1—ay_
where fi; (2, 29) := at }tho + il — ! 1)$t,ﬁt = &ﬁt
].—O[t].—O[t 1—O[t

3 Loss function

3.1 Decomposition

Intuition for training pg(xo.r): Let’s write the decomposed ¢ and py

Q($T|$o) NP@(Q?T)

Q($t71|$t7 960) ~ p9($t71 |$t)

It’s encouraging that the above terms are all Gaussian, so maybe we can train
RHS to fit LHS. But we still have a question: the LHS is conditioned on xg but
the RHS is not. To what extent can we make the approximation?

Recall that we wish pg(zo) approximates ¢(xg), so the loss could be negative
log likelihood

Lnne = = Eq(a) l0g po (o)
= 7E(1($0) log(/pG(xO:T)dxlzT)
_po(@or)
1) gl r o)
p@(xO:T)
log(—————
) (CI($1;T|$0)) (

po(zo.T)
q(z1.7|T0)

—Eqy(z0) l0g(E,

—-E

IN

(z0) E Jensen’s Inequality)

q q(z1.7|T0

= _EQ(iCo:T) log() =L

Here importance sampling is motivated by leveraging the density and sam-
ples for g(x1.7|zp), which we already have.

In Lyny we only care about the marginal pg(z¢) and ¢(z¢). However, L
actually requires pg(zo.7) to approximate q(zg.7), i.e., the reverse diffusion will
follow the density of forward diffusion.

Now swap and decompose pg and ¢

(J(£1:T|ﬂf0)
po(To.1)
q(zr|zo)
pe(xT)

L= Eq(IO;T) log(

= EQ(IO:T) log(

T-1

+ Z Eq(ZI?();T) log(

t=1

Q($t|xt+17 900)
Po(T¢|T141)

L

+ Eq(eo.r) l0g(———
a(zor) g(Pe($o|$1)

1. Iy is irrelevant to training, since pg(xr) is fixed.

2.l = Eq(mHl’zO)KL(q(xﬂxHhm0)||p9(ﬂct|xt+1)) as we will show later.

3. lO = 7Eq(ac1,wo) log(pg(xo|$1))

We can train 6§ with L, but we want to look further into I; for the following
reasons: (1) What does this loss function mean? (2) The usage of log could lead
to instability; we want to simplify the loss function.

‘We have
q(zr|2o)
lr=F, log(————=
T Q(xO:T) g(p@(xT))
Q($T|Jio)
= q(mo)Eq(ﬂ?T\%)EQ(M:T—llxoaIT)IOg(po(z7)

q(@r|zo)
pe(xT)

= Ey(z0) K L(q(x7|70)|IPo (7))
and for t =1,2,..7T — 1

= Ey(wo) Eq(or|z0) 108(

Q($t|$t+1,$o)
I} =FE . log(————"——~
! e(@oT) B Po(Tt|Tee1)
q(x¢|xiq1, 70)
= (I(It+17$0)Eq(zt|It+17r0)Eq(xothers|It7mt+17m0) log(p6($t|$t+1)
Q(xt|$t+1,$o)
Po(Tt|Tes1)

= Ey(er1,20) K L(q(zt|T111, 20) |Ipo (24| 2441))

= Q(l’t+1,$0)Eq(wt|$t+1,I0) 1Og<

and finally
1
lo = Eq(py.) log(—————
’ a(wo.r) g(pe(xo|$1)
= Eq(rmfl)Eq(Iz:ﬂIo,Il) log(m)
= E (.2 log(—————
ateosen) 8 G)
= _Eq(zo,ml) 10g(pg($0|$1))
Or if you like KL divergence representation
lo = Eg(zy. log(—————
0 q(zo.T) g(pe(xo\xl))
1
= oo Eqeoler) Boaar o o) 108(s

= Eyton) Bateaten) 08

q(zolr1)
po(xo|z1)
= Eq(a) K L(q(xo|71)|[po(z0|71)) + Eyay) H(q(x0]71))

= Eq(zl) [Eq(rolﬂﬁ) log() — Eq(zo\m) log(q(zol1))]

4

This is consistent with the equation (3) and (5) in [1].

3.2 Mean Squared Loss

We can further simplify the loss function, replacing KL divergence with mean
squared loss, which is more stable.

1. We don’t need to train I since pg(zr) = N(0,I) is fixed.
2. Fort=2,..T,

li1 = Ey(e,00) K L(q(x—1]71, 20) |Po (21 -1]71))

where }
q(ze—1|me, 20) = N (2113 fir (21, T0), Bt),
O o (1 — oy ~ 1—
(o) = YO Py VO ZG) 1By

1—@25 1—5(75 1—0475

The KL divergence between two Gaussian distributions has the analytical
expression:

|32

1
KL (1, 1)V (2, 22)) = 5 [log = ko tr(257150) + (2 — 1) "85 (e —)

For simplicity, we can fix the variance of pg(z¢—1|z;) as 02(t). According
to [1], both ¢%(t) = B; and o2(t) = B; had similar experimental results.
Denote the mean of pg(z:—1|zt) as pe(zt,t), then

| it (24, 20) — po(ae,)]
li-1 = Ey(z,,00) [207 (¢) +C

fort=2,...T.

3. For lO = _Eq(wo,zl) 10g(pg($0|5€1)), we can set p9($0|$1) = N(,Ug(ﬂ?l, 1)a 02(1))
Then)
[l (z1,1) — ol

lo = E(zq,51)~q(z0,21) { 202(1)

|+c

The choice of o%(1) is tricky. Fortunately, as we will see later, it can be
removed from the training loss and reverse diffusion process.

3.3 Reparameterization

Let’s focus on ;1 for t = 2,...T. We aim to approximate [i;(x;,zo) with
the neural network pug(z,t). Note that pg(xy,t) only takes x; as input, while
ft (e, o) is the linear combination of zg and z;, and z(can also be represented
by x; and noise. So why not just use the neural network to approximate the
noise?

In particular, with z; = v/a;xo++/1 — aze, where € is the standard Gaussian
noise.
Bt

i 1
Mt(xt,xo)—@(xt—me

Now we can reparameterize (g as

)

ol) = j@m e)]

where eg (x4,) is the neural network aiming to approximate e. With such repa-
rameterization, we rewrite the loss as

B

liii=Fppe | st
=1 o {202@)0@(1—0@)

lle — eo(v/arxo + V1 — dte7t)||2] +C
fort =2,..T.
Similar reparameterization can also be applied to lg.

1
lo = E(zg,21)~a(z0,21) |:202(1) ll126(21,1) — xOHZ} +C

reparameterize pg(x1,1)

1
= e T A

To = (3’]1 — 1-— 016)

1
Vaa
With oy = @1, 1 = 1 — a1, we rewrite
ek

lo=Eq,.c
07 70 | 9521y (1 — an)

lle — ea(vVaizo + V1 —are, 1)|*| + C

3.4 Simplication

Furthermore, [1] found it beneficial to sample quality (and simpler to implement)
to remove the weights in the above mean squared loss:

lt—l = Exo,e [HG — 69(\/ @tﬁﬁo + A 1-— Eyte,t)HQ]

fort=1,..T.

4 Sampling

After training, we can sample pg(zo) with the reverse diffusion process. For
po(xolz1) = N(pe(z1,1),0%(1)) we can just set 02(1) = 0, i.e. noiseless sam-
pling.

In summary, the training and sampling algorithm is in Figure 1.

Algorithm 1 Training Algorithm 2 Sampling

1 repeat 1: xr ~ N(0,T)
2: Xo ~ q(Xo) 2: fort="T,...,1do
2. t I/{}l(l(f)olir)n({l, ..., T} 3: z~N(0,I)ift > 1,elsez=0
T e~ , -
5: Take gradient descent step on 4 xa = (xt - \}ﬁ@(xt’t)) + oz
Vo ||e — eo(v/@ixo + VI — aze, t) | 5: end for
6: until converged 6: return xo

Figure 1: DDPM training and sampling algorithm

5 Tutorial Code

https://github.com/Jmkernes/Diffusion/blob/main/diffusion/ddpm/diffusers.
py

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. Advances in neural information processing systems, 33:6840—6851,
2020.

