
Denoising Diffusion Probabilistic Models

Liu Yang

We will introduce the Denoising Diffusion Probabilistic Models (DDPM) in
this lecture [1]. The notation might be slightly from the original paper.

1 Markov Chain with Gaussian Noise

Consider a Markov chain with the following kernel:

q(xs|xt) = N (As,txt, B
2
s,t)

for s > t, we have
Ar,t = Ar,sAs,t

B2
r,t = A2

r,sB
2
s,t +B2

r,s

for r > s > t.
Consider a forward discrete diffusion process:

q(xt+1|xt) = N (At+1,txt, B
2
t+1,t)

If we set At+1,t =
√
αt+1, Bt+1,t =

√
1− αt+1, βt = 1 − αt, which is the

notation used in [1], i.e.

q(xt|xt−1) = N (
√

1− βtxt−1, βt)

then
As,t =

√
αt+1...αs

Bs,t =
√

1− αt+1...αs

A2
s,t +B2

s,t = 1

If we fix αi as a constant, then as s → ∞, we have As,t → 0, Bs,t → 1, and
q(xs|xt) → N (0, 1) for any xt.

In [1], we denote ᾱt = Πt
s=1αs. If we use this notation, then

As,0 =
√
α1...αs =

√
ᾱs

Bs,0 =
√
1− α1...αs =

√
1− ᾱs

q(xs|x0) = N (
√
ᾱsx0, 1− ᾱs)

1

2 Reverse Diffusion Process

We want to learn another Markov chain pθ(x0:T) (reverse diffusion) defined by

pθ(xT) = N (0, I)

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)), t = T, ...2, 1

so that pθ(x0) approximates q(x0). pθ(x0:T) is not Gaussian due to the nonlin-
earity of µθ. Actually pθ(xt) becomes more and more expressive as t decreases
from T to 0.

In order to train pθ(xt−1|xt), we need to decompose q(x0:T) in a reverse
order.

First perspective:

q(x0:T) = q(xT)q(xT−1|xT)q(xT−2|xT−1)...q(x0|x1)

But it’s hard formulate q(xt−1|xt).
Fortunately, we have a second perspective:

q(x0:T) = q(x0)q(xT |x0)q(xT−1|xT , x0)q(xT−2|xT−1,x0
)...q(x1|x2, x0)

An important observation is that q(xt|xs, x0) is Gaussian for s > t, and we have
the analytical expression:

q(xt|xs, x0) = q(xs|xt, x0)q(xt|x0)/q(xs|x0)

= q(xs|xt)q(xt|x0)/q(xs|x0)

∝ exp(− (xs −As,txt)
2

2B2
s,t

− (xt −At,0x0)
2

2B2
t,0

+
(xs −As,0x0)

2

2B2
s,t

)

Rearranging the first and second order coefficients, we denote

q(xt|xs, x0) = N (Cs,txs +Ds,tx0, E
2
s,t)

Note that the mean is linear to xs and x0, while the std is independent of xs

and x0. Cs,t, Ds,t, Es,t can be calculated with patience.

Cs,t = As,tB
2
t,0/B

2
s,0

Ds,t = At,0B
2
s,t/B

2
s,0

E2
s,t = B2

s,tB
2
t,0/B

2
s,0

A special case of q(xs−1|xs, x0) is given in [1]:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃t),

where µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, β̃t :=

1− ᾱt−1

1− ᾱt
βt

2

3 Loss function

3.1 Decomposition

Intuition for training pθ(x0:T): Let’s write the decomposed q and pθ

q(xT |x0) ∼ pθ(xT)

q(xt−1|xt, x0) ∼ pθ(xt−1|xt)

It’s encouraging that the above terms are all Gaussian, so maybe we can train
RHS to fit LHS. But we still have a question: the LHS is conditioned on x0 but
the RHS is not. To what extent can we make the approximation?

Recall that we wish pθ(x0) approximates q(x0), so the loss could be negative
log likelihood

LNNL = −Eq(x0) log pθ(x0)

= −Eq(x0) log(

∫
pθ(x0:T)dx1:T)

= −Eq(x0) log(Eq(x1:T |x0)
pθ(x0:T)

q(x1:T |x0)
)

≤ −Eq(x0)Eq(x1:T |x0) log(
pθ(x0:T)

q(x1:T |x0)
) (Jensen’s Inequality)

= −Eq(x0:T) log(
pθ(x0:T)

q(x1:T |x0)
) =: L

Here importance sampling is motivated by leveraging the density and sam-
ples for q(x1:T |x0), which we already have.

In LNNL we only care about the marginal pθ(x0) and q(x0). However, L
actually requires pθ(x0:T) to approximate q(x0:T), i.e., the reverse diffusion will
follow the density of forward diffusion.

Now swap and decompose pθ and q

L = Eq(x0:T) log(
q(x1:T |x0)

pθ(x0:T)
)

= Eq(x0:T) log(
q(xT |x0)

pθ(xT)
)

+

T−1∑
t=1

Eq(x0:T) log(
q(xt|xt+1, x0)

pθ(xt|xt+1)
)

+ Eq(x0:T) log(
1

pθ(x0|x1)
)

=:

T∑
t=0

lt

1. lT is irrelevant to training, since pθ(xT) is fixed.

3

2. lt = Eq(xt+1,x0)KL(q(xt|xt+1, x0)∥pθ(xt|xt+1)) as we will show later.

3. l0 = −Eq(x1,x0) log(pθ(x0|x1))

We can train θ with L, but we want to look further into lt for the following
reasons: (1) What does this loss function mean? (2) The usage of log could lead
to instability; we want to simplify the loss function.

We have

lT = Eq(x0:T) log(
q(xT |x0)

pθ(xT)
)

= Eq(x0)Eq(xT |x0)Eq(x1:T−1|x0,xT) log(
q(xT |x0)

pθ(xT)
)

= Eq(x0)Eq(xT |x0) log(
q(xT |x0)

pθ(xT)
)

= Eq(x0)KL(q(xT |x0)∥pθ(xT))

and for t = 1, 2, ...T − 1

lt = Eq(x0:T) log(
q(xt|xt+1, x0)

pθ(xt|xt+1)
)

= Eq(xt+1,x0)Eq(xt|xt+1,x0)Eq(xothers|xt,xt+1,x0) log(
q(xt|xt+1, x0)

pθ(xt|xt+1)
)

= Eq(xt+1,x0)Eq(xt|xt+1,x0) log(
q(xt|xt+1, x0)

pθ(xt|xt+1)
)

= Eq(xt+1,x0)KL(q(xt|xt+1, x0)∥pθ(xt|xt+1))

and finally

l0 = Eq(x0:T) log(
1

pθ(x0|x1)
)

= Eq(x0,x1)Eq(x2:T |x0,x1) log(
1

pθ(x0|x1)
)

= Eq(x0,x1) log(
1

pθ(x0|x1)
)

= −Eq(x0,x1) log(pθ(x0|x1))

Or if you like KL divergence representation

l0 = Eq(x0:T) log(
1

pθ(x0|x1)
)

= Eq(x1)Eq(x0|x1)Eq(x2:T |x0,x1) log(
1

pθ(x0|x1)
)

= Eq(x1)Eq(x0|x1) log(
1

pθ(x0|x1)
)

= Eq(x1)[Eq(x0|x1) log(
q(x0|x1)

pθ(x0|x1)
)− Eq(x0|x1) log(q(x0|x1))]

= Eq(x1)KL(q(x0|x1)∥pθ(x0|x1)) + Eq(x1)H(q(x0|x1))

4

This is consistent with the equation (3) and (5) in [1].

3.2 Mean Squared Loss

We can further simplify the loss function, replacing KL divergence with mean
squared loss, which is more stable.

1. We don’t need to train lT since pθ(xT) = N (0, I) is fixed.

2. For t = 2, ...T ,

lt−1 = Eq(xt,x0)KL(q(xt−1|xt, x0)∥pθ(xt−1|xt))

where
q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃t),

µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, β̃t :=

1− ᾱt−1

1− ᾱt
βt

The KL divergence between two Gaussian distributions has the analytical
expression:

KL(N (µ1,Σ1)∥N (µ2,Σ2)) =
1

2

[
log

|Σ2|
|Σ1|

− k + tr(Σ−1
2 Σ1) + (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

]
For simplicity, we can fix the variance of pθ(xt−1|xt) as σ

2(t). According
to [1], both σ2(t) = βt and σ2(t) = β̃t had similar experimental results.
Denote the mean of pθ(xt−1|xt) as µθ(xt, t), then

lt−1 = Eq(xt,x0)

[
∥µ̃t(xt, x0)− µθ(xt, t)∥2

2σ2(t)

]
+ C

for t = 2, ...T .

3. For l0 = −Eq(x0,x1) log(pθ(x0|x1)), we can set pθ(x0|x1) = N (µθ(x1, 1), σ
2(1)).

Then

l0 = E(x0,x1)∼q(x0,x1)

[
∥µθ(x1, 1)− x0∥2

2σ2(1)

]
+ C

The choice of σ2(1) is tricky. Fortunately, as we will see later, it can be
removed from the training loss and reverse diffusion process.

3.3 Reparameterization

Let’s focus on lt−1 for t = 2,T . We aim to approximate µ̃t(xt, x0) with
the neural network µθ(xt, t). Note that µθ(xt, t) only takes xt as input, while
µ̃t(xt, x0) is the linear combination of x0 and xt, and x0 can also be represented
by xt and noise. So why not just use the neural network to approximate the
noise?

5

In particular, with xt =
√
ᾱtx0+

√
1− ᾱtϵ, where ϵ is the standard Gaussian

noise.

µ̃t(xt, x0) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵ)

Now we can reparameterize µθ as

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)).

where ϵθ(xt, t) is the neural network aiming to approximate ϵ. With such repa-
rameterization, we rewrite the loss as

lt−1 = Ex0,ϵ

[
β2
t

2σ2(t)αt(1− ᾱt)
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
+ C

for t = 2, ...T .
Similar reparameterization can also be applied to l0.

l0 = E(x0,x1)∼q(x0,x1)

[
1

2σ2(1)
∥µθ(x1, 1)− x0∥2

]
+ C

reparameterize µθ(x1, 1) =
1

√
α1

(x1 −
β1√
1− ᾱ1

ϵθ(x1, 1)).

x0 =
1√
ᾱ1

(x1 −
√
1− ᾱ1ϵ)

With α1 = ᾱ1, β1 = 1− α1, we rewrite

l0 = Ex0,ϵ

[
β2
1

2σ2(1)α1(1− ᾱ1)
∥ϵ− ϵθ(

√
ᾱ1x0 +

√
1− ᾱ1ϵ, 1)∥2

]
+ C

3.4 Simplication

Furthermore, [1] found it beneficial to sample quality (and simpler to implement)
to remove the weights in the above mean squared loss:

lt−1 = Ex0,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
for t = 1, ...T .

4 Sampling

After training, we can sample pθ(x0) with the reverse diffusion process. For
pθ(x0|x1) = N (µθ(x1, 1), σ

2(1)) we can just set σ2(1) = 0, i.e. noiseless sam-
pling.

In summary, the training and sampling algorithm is in Figure 1.

6

Figure 1: DDPM training and sampling algorithm

5 Tutorial Code

https://github.com/Jmkernes/Diffusion/blob/main/diffusion/ddpm/diffusers.

py

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. Advances in neural information processing systems, 33:6840–6851,
2020.

7

