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In this lecture, we will cover an introduction to the stochastic differential
equations. Some concepts could be hard to understand rigorously, but an intu-
itive understanding should be enough for this class.

1 Brownian Motion

1.1 Stochastic Process and Brownian Motion

Definition 1. Let (Ω,F , P ) be a probability space. A stochastic process is a
measurable function X(t, ω) defined on the product space [0,∞)×Ω. In partic-
ular,

(a) for each t, X(t, ·) is a random variable,

(b) for each ω, X(·, ω) is a measurable function (called a sample path).

For convenience, the random variable X(t, ·) will be written as X(t) or Xt.
Thus, a stochastic process X(t, ω) can also be expressed as X(t)(ω) or simply
as X(t) or Xt.

In most cases, we are tackling X with continuous sample paths, so X(·, ω)
is measurable.

Definition 2. A stochastic process B(t, ω) is called a Brownian motion if it
satisfies the following conditions:

1. P{ω;B(0, ω) = 0} = 1, i.e. B(0, ω) = 0 a.e.

2. For any 0 ≤ s < t, the random variable B(t)−B(s) is normally distributed
with mean 0 and variance t− s, i.e., for any a < b,

P{a ≤ B(t)−B(s) ≤ b} =
1√

2π(t− s)

∫ b

a

e−
x2

2(t−s) dx.

3. B(t, ω) has independent increments, i.e., for any 0 ≤ t1 < t2 < · · · < tn,
the random variables

B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1),

are independent.
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4. Almost all sample paths of B(t, ω) are continuous functions, i.e.,

P{ω;B(·, ω) is continuous} = 1.

From the definition we have:

1. B(t) is normally distributed with mean 0 and variance t.

2. (Translation invariance) For fixed t0 ≥ 0, the stochastic process B′(t) =
B(t+ t0)−B(t0) is also a Brownian motion.

3. (Scaling invariance) For any real number λ > 0, the stochastic process
B′(t) = B(λt)/

√
λ is also a Brownian motion.

We can also define Rn-valued Brownian motion, which means that each
dimension is a Brownian motion, and they are independent of each other.

1.2 Numerical Approximation of Brownian Motion

The Brownian motion at time tn+1 can be approximated by

B(tn+1) =

n∑
i=0

∆Wi =

n∑
i=0

√
∆tiξi

where
∆Wi = B(ti+1)−B(ti), and ∆ti = ti+1 − ti,

and ξi are independent standard normal random variables.
One popular approximation of Brownian motion in continuous time is piece-

wise linear approximation, i.e. linear interpolation of B(ti).

Figure 1: An illustration of sample paths of Brownian motion using cumulative
summation of increments.
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2 Itô Calculus

2.1 Wiener Integral

Recall the Riemann–Stieltjes integral:
Let g be a monotonically increasing function on a finite closed interval [a, b].

A bounded function f defined on [a, b] is said to be Riemann-Stieltjes integrable
with respect to g if the following limit exists:∫ b

a

f(t) dg(t) = lim
∥∆n∥→0

n∑
i=1

f(τi)[g(ti)− g(ti−1)],

where ∆n = {t0, t1, . . . , tn−1, tn} is a partition of [a, b] with the convention
a = t0 < t1 < · · · < tn−1 < tn = b, ∥∆n∥ = max1≤i≤n(ti − ti−1), and τi
is an evaluation point in the interval [ti−1, ti]. It is a well-known fact that
continuous functions on [a, b] are Riemann-Stieltjes integrable with respect to
any monotonically increasing function g on [a, b]. In particular, if we set g(t) = t,
it is reduced to the Riemann integral.

Now let’s consider the following integral:∫ b

a

f(t)dB(t, ω)

where f ∈ L2([a, b]), i.e. f is square-integrable on [a, b]. We define the Wiener
integral in two steps:

Step 1. Suppose f is a step function given by f =
∑n

i=1 ai1[ti−1,ti), where
t0 = a and tn = b. In this case, define

I(f) =

n∑
i=1

ai(B(ti−1)−B(ti))

Step 2. Let f ∈ L2[a, b]. Choose a sequence {fn}∞n=1 of step functions such
that fn → f in L2[a, b]. We can show that {I(fn)}∞n=1 converges in L2(Ω), and
we define

I(f) = lim
n→∞

I(fn), in L2(Ω).

We can show that I(f) is well-defined (see details in [1]) We call I(f) the Wiener
integral of f . Note that I(f) is a random variable, i.e., we should write it as

I(f)(ω). It will be denoted by
∫ b

a
f(t)dB(t) or

∫ b

a
f(t)dB(t, ω).

Remark: The convergence in L2(Ω) means

lim
n→∞

E[(I(fn)− I(f))2] = 0.

2.2 Itô Integral

We have shown how to define
∫ b

a
f(t)dB(t, ω) where f ∈ L2([a, b]), now we can

extend it to stochastic f adapted to the Brownian motion B(t). “f is adapted to
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B(t) ” basically means that f(t) depends only on the information of B available
up to time t and not on future information. This condition is satisfied if f(t)
is a function of B(t) and t only. A counter-example is f(t) = B(T ) for t < T ,
which is not adapted to B(t).

We use the notation L2
ad([a, b]×Ω) to denote the set of stochastic processes

f(t, ω) that are adapted to the Brownian motion B(t) and square-integrable on

[a, b]× Ω, i.e.
∫ b

a
E[f2(t)] dt < ∞.

In an informal way, we can define the Itô integral of f ∈ L2
ad([a, b] × Ω) as

follows:

∫ b

a

f(t, ω)dB(t, ω) = lim
∥∆n∥→0

n∑
i=1

f(ti−1, ω)(B(ti)−B(ti−1)), in L2(Ω).

Here the limit is taken in L2(Ω) means that

lim
∥∆n∥→0

E[

(∫ b

a

f(t, ω)dB(t, ω)−
n∑

i=1

f(ti−1, ω)(B(ti)−B(ti−1))

)2

] = 0.

Note that the finite sum in Itô integral is defined at the left-hand points in
each subinterval of the partition. This is very important. Indeed, if we define
the finite sum at other points, we could get different limits. This is very different
from the Riemann integral where the choice of evaluation points does not affect
the limit.

For example, if we use the midpoint as the evaluation, We have Stratonovich
calculus:

∫ b

a

f(t, ω)dB(t, ω) = lim
∥∆n∥→0

n∑
i=1

f(
ti−1 + ti

2
, ω)(B(ti)−B(ti−1)), in L2(Ω).

Example: ∫ t

0

B(s)dB(s) =
1

2
B(t)2 − 1

2
t.∫ t

0

B(s) ◦ dB(s) =
1

2
B(t)2.

Let’s check it:

E[

(
1

2
B(t)2 − 1

2
t−

n∑
i=1

B(ti−1)(B(ti)−B(ti−1))

)2

]

=E[

(
1

2
B(t)2 − 1

2
t− 1

2

n∑
i=1

(B2(ti)−B2(ti−1)) +
1

2

n∑
i=1

(B(ti)−B(ti−1))
2

)2

]

=E[

(
−1

2
t+

1

2

n∑
i=1

(B(ti)−B(ti−1))
2

)2

] → 0
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Suppose ti = it/n, then B(ti) − B(ti−1) is Gaussian with variance t/n. The
Stratonovich integral can be verified similarly.

Theorem 1. (Itô isometry) Suppose f ∈ L2
ad([a, b]× Ω). Then the Itô integral

I(f) =
∫ b

a
f(t) dB(t) is a random variable with E[I(f)] = 0 and

E[I(f)2] =
∫ b

a

E[f2(t)] dt.

For any f, g ∈ L2
ad([a, b]× Ω), the following equality holds:

E

[∫ b

a

f(t) dB(t)

∫ b

a

g(t) dB(t)

]
=

∫ b

a

E[f(t)g(t)] dt.

Remark: For deterministic f , the Itô integral is reduced to the Wiener inte-

gral defined above. In this case, the Wiener integral
∫ b

a
f(t) dB(t) is Gaussian.

We can show this starting from step functions, and then take the limit.

2.3 Itô’s Formula

Recall the chain rule of Riemann integral. If f and g are differentiable, then
f(g(t)) is also differentiable and has derivative

d

dt
f(g(t)) = f ′(g(t))g′(t)

And

f(g(t)) = f(g(t0)) +

∫ t

t0

f ′(g(s))dg(s)

For g as a Brownian motion, the above equality doesn’t hold. Actually g′(t)
makes no sense since the Brownian motion is nowhere differentiable.

Theorem 2. (Itô formula in a simple form) If f and its first two derivatives
are continuous on R, then it holds with probability one (almost surely, a.s.) that

f(B(t)) = f(B(t0)) +

∫ t

t0

f ′(B(s)) dB(s) +
1

2

∫ t

t0

f ′′(B(s)) ds.

So we can compute the Itô integral
∫ t

t0
f ′(B(s)) dB(s) by∫ t

t0

f ′(B(s)) dB(s) = f(B(t))− f(B(t0))−
1

2

∫ t

t0

f ′′(B(s)) ds.

Theorem 3. (Itô formula in a general form) Let Xt be a stochastic process
given by

Xt = Xa +

∫ t

a

f(s) dB(s) +

∫ t

a

g(s) ds, a ≤ t ≤ b.

5



Suppose θ(t, x) is a continuous function with continuous partial derivatives
∂θ
∂t ,

∂θ
∂x , and

∂2θ
∂x2 . Then θ(t,Xt) satisfies

θ(t,Xt) = θ(a,Xa) +

∫ t

a

∂θ

∂x
(s,Xs)f(s) dB(s)

+

∫ t

a

[
∂θ

∂t
(s,Xs) +

∂θ

∂x
(s,Xs)g(s) +

1

2

∂2θ

∂x2
(s,Xs)f(s)

2

]
ds. (7.4.3)

The proof of Itô’s formula is out of the scope of this course.
A good way to memorize the above integral equation is the “symbolic deriva-

tion of differential form”. First, apply the Taylor expansion to get

dθ(t,Xt) =
∂θ

∂t
(t,Xt) dt+

∂θ

∂x
(t,Xt) dXt +

1

2

∂2θ

∂x2
(t,Xt)(dXt)

2.

Then replace dXt with f(t)dB(t) + g(t)dt. Also, (dXt)
2 = (f(t)dB(t) +

g(t)dt)2 ≈ f2(t)dt. Therefore,

dθ(t,Xt) =
∂θ

∂t
dt+

∂θ

∂x
(f(t) dB(t) + g(t) dt) +

1

2

∂2θ

∂x2
f(t)2 dt

=
∂θ

∂x
f(t) dB(t) +

(
∂θ

∂t
+

∂θ

∂x
g(t) +

1

2

∂2θ

∂x2
f(t)2

)
dt.

For computation we can always use this kind of symbolic derivation on stochas-
tic differentials to get the results. However, we need to emphasize that this
derivation is not a proof. It just happens to produce the correct results.

Example 1: f(x) = x2

∫ b

a

B(t)dB(t) =
1

2
(B2(b)−B2(a)− (b− a))

This is consistent with the example we have seen when introducing Itô integral.
Example 2: Langevin equation

Xt = x0 + αB(t)− β

∫ t

0

Xsds

where α ∈ R and b > 0. This “stochastic differential equation” can also be
written as

dXt = αdB(t)− βXtdt, X0 = x0,

Let θ(t, x) = eβtx. Then

∂θ

∂t
= βeβtx,

∂θ

∂x
= eβt, and

∂2θ

∂x2
= 0.
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Hence by Itô’s formula, we have

d(eβtXt) = βeβtXt dt+ eβt dX(t)

= βeβtXt dt+ eβt (αdB(t)− βXt dt)

= αeβt dB(t).

or the integral form:

eβtXt = X0 +

∫ t

0

αeβs dB(s), 0 ≤ t.

i.e.

Xt = e−βtx0 + α

∫ t

0

e−β(t−s) dB(s).

The solution Xt is called an Ornstein–Uhlenbeck process.
Question: What is the distribution of Xt at t > 0?

Figure 2: An illustration of sample paths of Ornstein–Uhlenbeck process

3 Stochastic Ordinary Differential Equations

3.1 Existence and Uniqueness

Definition 3. Let Xt be a Rn-valued stochastic process, B(t) is Rd-valued Brow-
nian motion, f : [0, T ] × Rn → Rn, σ : [0, T ] × Rn×d → Rn. We say Xt is a
strong solution of the stochastic ordinary differential equation

X0 = x
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dXt = f(t,Xt)dt+ σ(t,Xt)dB(t), ∀t ∈ [0, T ]

if

1. Xt is almost surely continuous and adapted to B(t).

2. f(t,Xt) ∈ L1([0, T ]) almost surely.

3. σ(t,Xt) ∈ L2
ad([0, T ]× Ω), so that the Itô’s integral is well-defined.

4. The stochastic integral equation

X0 = x

Xt = x+

∫ t

0

f(s,Xs)ds+

∫ t

0

σ(s,Xs)dB(s), ∀t ∈ [0, T ]

is satisfied almost surely.

Remark: The condition for σ can be relaxed to weaker conditions, but here
we keep it as above, so that it’s consistent with the condition in the definition
of Itô’s integral we introduced.

Theorem 4. Suppose there exists constant C and K, s.t. ∀t ∈ [0, T ], x, y ∈ Rn

|f(t, x)|+ |σ(t, x)|F ≤ C(1 + |x|), (linear growth condition)

and

|f(t, x)− f(t, y)|+ |σ(t, x)− σ(t, y)|F ≤ K|x− y| (Lipschitz condition)

Assume furthermore that the initial condition x is a random variable indepen-
dent of the Brownian motion Wt with

E|x|2 < ∞.

Then the SDE defined above has a unique strong solution Xt with

E
[∫ t

0

|Xs|2 ds
]
< ∞ (3.39)

for all t > 0.

Here | · |F is the Frobenius norm. For a matrix A ∈ Rm×n, the Frobenius
norm is defined as:

|A|F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

By uniqueness of strong solutions we mean that, if Xt and Yt are strong
solutions, then Xt = Yt for all t almost surely.
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3.2 Numerical Methods for SODEs

Numerical methods are essential for solving stochastic ordinary differential equa-
tions (SODEs) when analytical solutions are not available. This section intro-
duces two widely used numerical schemes: the Euler-Maruyama scheme and the
Milstein scheme. More details on this topic can be found in [2].

3.2.1 Euler-Maruyama Scheme

The Euler-Maruyama scheme is a simple and popular method for approximating
solutions to SODEs. It is a straightforward extension of the Euler method for
ordinary differential equations to the stochastic case.

Consider the SODE

dXt = f(t,Xt) dt+ σ(t,Xt) dB(t), X0 = x0,

where Xt is the state variable, f is the drift coefficient, σ is the diffusion coeffi-
cient, and B(t) is a Brownian motion.

The Euler-Maruyama scheme discretizes the time interval [0, T ] into N steps
with a fixed step size ∆t = T

N . The approximation Xn of Xtn at the discrete
times tn = n∆t is given by:

Xn+1 = Xn + f(tn, Xn)∆t+ σ(tn, Xn)∆Bn,

where ∆Bn = B(tn+1)−B(tn) are the increments of the Brownian motion, which
are normally distributed with mean 0 and variance ∆t, i.e., ∆Bn ∼ N (0,∆t).

The Euler-Maruyama scheme is easy to implement and computationally ef-
ficient. However, its accuracy is limited, especially for problems requiring high
precision.

3.2.2 Milstein Scheme

The Milstein scheme improves upon the Euler-Maruyama scheme by including
an additional term that accounts for the variation in the diffusion coefficient.
It is particularly useful for SODEs where the diffusion term σ(t,Xt) is not
constant.

The Milstein scheme for the SODE

dXt = f(t,Xt) dt+ σ(t,Xt) dB(t), X0 = x0,

is given by:

Xn+1 = Xn+f(tn, Xn)∆t+σ(tn, Xn)∆Bn+
1

2
σ(tn, Xn)σ

′(tn, Xn)
(
(∆Bn)

2 −∆t
)
,

where σ′ denotes the derivative of σ with respect to X.
The Milstein scheme generally provides better accuracy than the Euler-

Maruyama scheme, particularly for problems where the diffusion coefficient has
significant variability.
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4 Fokker-Planck Equation

Consider the stochastic differential equation (SODE)

dXt = f(t,Xt) dt+ σ(t,Xt) dB(t), X0 = x0,

Informally, suppose f and σ satisfy the linear growth, Lipschitz condition, and
additional differentiable regularity. Also, suppose Xt at t has the density p(t, ·),
then the density function p(t, x) of the solution Xt satisfies the Fokker-Planck
equation:

∂p(t, x)

∂t
= − ∂

∂x
[f(t, x)p(t, x)] +

1

2

∂2

∂x2

[
σ2(t, x)p(t, x)

]
.

In higher dimensions, let Xt be a Rn-valued stochastic process, B(t) is Rd-
valued Brownian motion, f : [0, T ] × Rn → Rn, σ : [0, T ] × Rn×d → Rn. The
Fokker-Planck equation is given by:

∂p(t,x)

∂t
= −

n∑
i=1

∂

∂xi
[fi(t,x)p(t,x)] +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
[Dij(t,x)p(t,x)] ,

where the diffusion tensor D is given by:

Dij(t,x) =
1

2

d∑
k=1

σik(t,x)σjk(t,x).

The Fokker-Planck equation describes the time evolution of the probability
density function of the solution to the SODE. The connection of the Fokker-
Planck equation to the SODE is very important in understanding the behavior
of stochastic processes and generative diffusion models.

Example 1: Brownian motion, f(x) = 0, σ(x) = 1. The Fokker-Planck
equation is

∂p(t, x)

∂t
=

1

2

∂2

∂x2
p(t, x).

If X0 = 0, the solution is the Gaussian distribution

p(t, x) =
1√
2πt

exp(−x2/2t).

Example 2: Ornstein–Uhlenbeck process, f(x) = −βx, σ(x) = α. The
Fokker-Planck equation is

∂p(t, x)

∂t
= β

∂

∂x
(xp(t, x)) +

1

2

∂2

∂x2
(α2p(t, x)).

Recall the solution of Langevin equation we obtained

Xt = e−βtx0 + α

∫ t

0

e−β(t−s) dB(s).
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According to Itô isometry, the distribution of Xt is Gaussian with mean e−βtx0

and variance

α2

∫ t

0

(e−β(t−s))2ds = α2(1− e−2βt)/(2β) := h2(t)

i.e.

p(Xt = x|X0 = x0) =
1√

2πh2(t)
exp(− (x− e−βtx0)

2

2h2(t)
)

You can verify that p(Xt = x|X0 = x0) satisfies the Fokker-Planck equation.
Suppose the intial distribution of X0 is p0(x), then the distribution density

of Xt is

p(t, x) =

∫
R
p(Xt = x|X0 = y)p0(y)dy.

which also satisfies the Fokker-Planck equation since the Fokker-Planck equation
is linear.

Some properties of the Ornstein–Uhlenbeck process:

1. Start from any fixed x0, the process Xt converges to the stationary distri-
bution, which is Gaussian with zero mean and variance α2/(2β).

2. Actually if we start from a bounded distribution, the process Xt will con-
verge to the stationary distribution exponentially fast. In other words, for
a sufficiently large t, the distribution of Xt is very close to the stationary
distribution and “forgets” the initial distribution. As we will see later,
this property is very important in generative models.

5 Diffusion Models and Score Matching

A diffusion model aims to build a function that maps a sample from a simple
distribution (e.g., Gaussian) to a more complex distribution. Mapping from
a complex distribution to a Gaussian distribution is easy. We just saw an
example: the Ornstein–Uhlenbeck process. The reverse direction is much more
challenging. But the idea is that, given a forward process with p(t, x) satisfies
the corresponding Fokker-Planck equation, can we define a backward process
which follows the same Fokker-Planck equation but in the reverse direction? In
other words, we want the density evolution of the backward process to be the
same as the forward process but in the reverse direction.

5.1 Forward and Reverse SODE

Consider the forward SODE

dXt = f(Xt, t)dt+ g(t)dBt

For simplicity, we assume g is independent of Xt.
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The corresponding Fokker-Planck equation for density q(x, t) is

∂

∂t
q(x, t) = −∇ · [f(x, t)q(x, t)] + 1

2
g2(t)∇2q(x, t)

Suppose the reverse SODE is

dX̄τ = f̄(X̄τ , τ)dτ + ḡ(τ)dB̄τ ,

where τ = T − t is the reverse time, dB̄τ is another Brownian motion. It has
the corresponding Fokker-Planck equation

∂

∂τ
p(x, τ) = −∇ · [f̄(x, τ)p(x, τ)] + 1

2
ḡ2(τ)∇2p(x, τ)

i.e.,

− ∂

∂t
p(x, T − t) = −∇ · [f̄(x, T − t)p(x, T − t)] +

1

2
ḡ2(T − t)∇2p(x, T − t)

Note the negative sign in LFH. Move it to RHS:

∂

∂t
p(x, T − t) = ∇ · [f̄(x, T − t)p(x, T − t)]− 1

2
ḡ2(T − t)∇2p(x, T − t)

Now compare the above equation with the Fokker-Planck equation of forward
SODE. In order to have p(x, T − t) = q(x, t), we only need

ḡ2(T − t) = g(t)

f̄(x, T − t) = −f(x, t) + g2(t)∇ log q(x, t)

Note that the reverse dynamic is not unique. For example, we can also
remove the diffusion term in the reverse process, i.e.

ḡ2(T − t) = 0

f̄(x, T − t) = −f(x, t) +
1

2
g2(t)∇ log q(x, t)

Now the key challenge is to calculate/approximate ∇ log q(x, t). This func-
tion is the so-called score function.

5.2 Approximating Score Function

We need to approximate ∇x log q(x, t) (score function) with samples of q(x, t),
i.e., Xt, which can be obtained from the forward SODE simulation.

The key equation is:

∇x log p(x) = argmin
h(x)

Ep(x,y)||h(x)−∇x log p(x|y)||2

To show this, we take the variation of the right hand side w.r.t. h(x) at
h(x) = ∇x log p(x), we need
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Ep(x,y)[ϵ(x)∇x log p(x)− ϵ(x)∇x log p(x|y)] = 0,∀ϵ(x)

i.e. we require

∇x log p(x) = Ep(y|x)∇x log p(x|y)

This is true, since

RHS =Ep(y|x)∇x log p(y|x) + Ep(y|x)∇x log p(x)

=

∫
∇xp(y|x)dy +∇x log p(x)

=∇x

∫
p(y|x)dy +∇x log p(x)

=∇x log p(x)

If we set x = xt, y = x0, p(x|y) = q(xt|x0), we have

∇xt
log q(xt, t) = arg min

h(xt)
Eq(x0,xt)||h(xt)−∇xt

log q(xt|x0)||2

This is exactly the score-matching loss in training diffusion models.
Now this loss function is tractable:

1. ∇xt log q(xt|x0) can has analytical form if we know the forward SODE. For
example, if the forward SODE is Ornstein–Uhlenbeck process, q(xt|x0) is
the Gaussian distribution, and

∇xt
log q(xt|x0) =

xt − e−βtx0

α2(1− e−2βt)/(2β)

2. Samples of q(x0, xt) is accessible through forward SODE, so the expecta-
tion can be evaluated via Monte Carlo.

3. The score function doesn’t need the normalization term ∇xt
log q(xt, t),

so we can use a neural network to represent it.
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