
A NOTE ON HAMILTONIAN ODES IN THE WASSER-
STEIN SPACE OF PROBABILITY MEASURES

Liu Yang
Division of Applied Mathematics
Brown University
Providence, RI 02912, USA
liu yang@brown.edu

ABSTRACT

This is a note on Hamiltonian ODEs in the Wasserstein space of probability mea-
sures, based on Ambrosio & Gangbo (2008). It’s more focused on the introduction
of the preliminaries, including the tangent space of Wasserstein space and convex
analysis. There might be some mistakes, due to author’s limited knowledge.

1 INTRODUCTION

The motivation of this reading this paper is to learn the dynamics in W2 space, and its connection to
stochastic differential equations (SDEs), trying to apply to generative models, in specific, introduce
dynamics to flow-based models. Later I found it’s only related to ODEs, i.e. deterministic flow
models, instead of SODEs. But the perspective and some mathematical facts are pretty interesting,
and might be helpful in the future research.

The paper starts from the differential structure of P2(RD), then goes to convex analysis on P2(RD),
and finally builds the theory of Hamiltonian ODE’s in the infinite-dimensional space P2(RD).

I am going to present the definitions and important results, as well as my intuitive understandings,
but skip the proofs.

2 DIFFERENTIAL STRUCTURE OF THE WASSERSTEIN SPACE P2(R
D)

P2(RD) space is the metric space of probability measures on RD endowed with Wasserstein-2 (W2)
distance as metric. Lets first review W2 distance.

2.1 WASSERSTEIN-2 DISTANCE

Consider the Wasserstein space P2(RD) of the probability measures with finite quadratic moments
in RD, endowed with the Wasserstein distance W2, defined as

W 2
2 (µ, ν) = min

γ
{
∫
RD×RD

|x− y|2dγ(x, y) : γ ∈ Γ(µ, ν)} (1)

where Γ(µ, ν) is the set of Borel probability measures on RD × RD which have µ and ν as their
marginals.

Actually we could have the following topology induced by W2 distance:

Theorem 1 A sequence {µn}∞n=1 converges to µ in P2(RD) if and only if µn narrowly converges
to µ, i.e. weak convergence in the duality with Cb(RD) (continuous and bounded functions), and
M2(µn) converges to M2(µ) as n goes to infinity.

If RD is replaced with a compact set in RD, then the condition of the second moment convergence
could be removed.

For more details, see https://www.math.u-psud.fr/˜filippo/Wp.pdf.
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2.2 TANGENT SPACE TO P2(RD)

Theorem 2 For any absolute continuity curve µt : [a, b] → P2(RD) there exist vt ∈ L2(µt;R
D)

for which the following two equations holds:

d

dt
µt +∇ · (vtµt) = 0 (2)

lim
h→0

1

|h|
W2(µt+h, µt) = ‖vt‖L2(µt) for a.e. t (3)

Given the continuity equation 2 holds, the asymptotic equality 3 holds if and only if

vt ∈ Tµt
P2(RD) = {∇φ : φ ∈ C∞c (RD)}

L2(µt;R
D)

for a.e. t (4)

Finally, the map t→ vt ∈ L2(µt, R
D) is uniquely determined up to L1-negligible sets.

The continuity equation 2 is in the sense of distributions in [a, b]×RD, i.e.∫ b

a

∫
RD

(∂tφ(x, t) + 〈vt(x),∇xφ(x, t)〉)dµt(x)dt = 0

∀φ ∈ C∞c (RD × (a, b)).

(5)

The above theorem tells that TµP2(RD) defines the tangent space to P2(RD) at µ.

Essentially, the optimal plans between µt+h and µt asymptotically behave as the plans induced by
the transport maps (id+hvt). Actually, when µt ∈ P a2 (RD) (a.c. w.r.t LD), where the optimal plans
are unique and induced by maps, we have

th − id
h

→ vt in L2(µt;R
D) as h→ 0 (6)

Also, a duality argument gives

[TµP2(RD)]⊥ = {v ∈ L2(µ,RD) : ∇ · (vµ) = 0} (7)

The existence of the “potential flow” velocity field is important to me, since I was exploring flow-
based generators that would drive the distribution along a prescribed trajectory (or “curve”). This
theorem guarantees the existence of the generator as long as the trajectory is absolutely continuous in
W2 sense.

2.3 FRECHET SUBDIFFERENTIAL

Recall that in Euclidean space, the subdifferential of a continuous function (not necessarily differen-
tiable) f : Rn → R at x ∈ Rn is defined as

∂f(x) = {g ∈ Rn : f(y) ≥ f(x) + g · (y − x),∀y ∈ Rn} (8)

We can define the subdifferential in P2(RD) in a similar way:

Let H : P2(RD)→ (−∞,+∞] be a proper, lower semicontinuous function and let H(µ) <∞. We
define Frechet subdifferential as

∂H(µ) = {v ∈ L2(µ,RD) : H(ν) ≥ H(µ) + sup
γ∈Γo(µ,ν)

∫
RD×RD

〈v(x), y − x〉dγ(x, y)

+ o(W2(µ, ν)) as ν → µ},
(9)

where supγ∈Γo(µ,ν)

∫
RD×RD 〈v(x), y − x〉dγ(x, y) could be viewed as the inner product of v and

optimal transport displacement.
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3 CONVEX ANALYSIS ON P2(R
D)

3.1 CONSTANT SPEED GEODESIC IN P2(RD)

Let µ0, µ1 ∈ P2(RD) and let γ ∈ Γo(µ0, µ1) be an optimal transport plan. Let π1 : RD × RD :
(z, w)→ z and π2 : RD ×RD : (z, w)→ w be the first and second projections of RD ×RD onto
RD.

Now we define the interpolation

µt = ((1− t)π1 + tπ2)#γ (10)

then t→ µt is a geodesic in P2(RD) of constant speed, i.e.

W2(µs, µt) = |t− s|W2(µ0, µ1) (11)

Equipped with the constant speed geodesic, we could then define the convexity of functions in
P2(RD).

3.2 λ-CONVEXITY

Let H : P2(RD) → (−∞,+∞] be proper and let λ ∈ R. We say that H is λ-convex if for every
µ0, µ1 ∈ P2(RD) and every optimal transport plan γ ∈ Γo(µ0, µ1), we have

H(µt) ≤ (1− t)H(µ0) + tH(µ1)− λt(1− t)W 2
2 (µ0, µ1) ∀t ∈ [0, 1] (12)

Here µt = ((1− t)π1 + tπ2)#γ, where π1 and π2 are the above projections.

Now we give an example as follows:

Let µ ∈ P2(RD) and define

H(µ) = −1

2
W 2

2 (µ, ν) µ ∈ P2(RD). (13)

Then H is (-1)-convex. Furthermore,

∂H(µ) ∩ TµP2(RD) = {γ̄ − id : γ ∈ Γo(µ, ν)} (14)

where γ̄ is the barycentric projection, characterized by∫
RD

φ(x)γ̄(x)dµ(x) =

∫
RD×RD

φ(x)ydγ(x, y), ∀φ ∈ Cb(RD). (15)

In particular:
∂H(µ) ∩ TµP2(RD) = {tνµ − id}, ∀µ ∈ P a2 (RD). (16)

where P a2 (RD) is the subset of P2(RD) consisting of probability measures absolutely continuous
w.r.t Lebesgue measure.

4 HAMILTONIAN ODES

Definition 1 Let J : RD → RD be linear map and Jv ⊥ v for all v ∈ RD. Let H : P2(RD) →
(−∞,+∞] be a proper and lower semicontinuous function. We say an absolutely continuous curve
µt : [0, T ]→ P2(RD),H(µt) <∞, is a Hamiltonian ODE relative toH , starting from µ̄ ∈ P2(RD),
if there exist vt ∈ L2(µt;R

D) with ‖vt‖L2(µt) ∈ L1(0, T ), such that
d

dt
µt +∇ · (Jvtµt) = 0, µ0 = µ̄, t ∈ (0, t)

vt ∈ Tµt
P2(RD) ∩ ∂H(µt) for a.e. t.

(17)

Theorem 3 Let µt be a Hamiltonian ODE relative to H above, with ‖vt‖L2(µt) ∈ L∞(0, T ). If H
is λ-convex for some λ ∈ R, then t→ H(µt) is constant.

The existence of solutions can be established if one imposes a growth condition on the gradient and a
“continuity property” of the gradients.
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5 DISCUSSION

The dynamics in W2 space, and its connection to stochastic differential equations (SDEs), trying
to apply to generative models, in specific, introduce dynamics to flow-based models, could be very
important.
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